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Abstract—A method of analysis has been devised for determining the radiant interchange among
surfaces, each of which may have both specular and diffuse reflectance components. The formulation
uses and generalizes the exchange factor concept (which was initially devised for specularly-reflecting
surfaces) and the radiosity concept (which was initially devised for diffusely-reflecting surfaces). Various
forms of the analytical method are presented that are suitable either for overall engineering-type
computations or for more detailed local investigations. Specific analytical and numerical consideration
is given to radiant interchange in cylindrical and conical cavities and to radiant transport through a
circular tube. Results are presented for various subdivisions of the surface reflectance into specular
and diffuse components. In general, it is found that the radiant efflux from a cavity increases as the
specular component becomes a larger fraction of the surface reflectance. A similar statement applies
for the transmission of radiant energy through a tube.

NOMENCLATURE
A, surface area;
B, radiosity;
E, dE, exchange factor;
F, dF, angle factor;
H, incident energy/time-area;
L, length or depth;
0, overall heat-transfer rate;
q, local heat-transfer rate/area;
R, radius;
T, position co-ordinate;
X, axial co-ordinate;
R absolute temperature;
€, surface emittance;
€a, apparent emittance of cavity;
g, dimensionless temperature, equation
(23a);
£, dummy variable;
P, hemispherical reflectance;
5, specular reflectance component ;
p%, diffuse reflectance component;
o, Stefan—Boltzmann constant;
@, cone half-opening angle.
INTRODUCTION

IN COMPUTING the exchange of thermal radiation
between surfaces, it has been customary to
formulate the equations of radiant interchange

under the assumption that the participating
surfaces are perfectly diffuse reflectors. Recently,
in recognition of the fact that many real surfaces
do possess a significant specular component,
there have appeared several papers [1-5] dealing
with radiant interchange among surfaces that
are perfectly specular reflectors. Consideration
has also been extended to enclosures in which
some of the surfaces are specularly-reflecting
and others are diffusely-reflecting {2, 3].

The present investigation is concerned with
surfaces that possess both specular and diffuse
reflectance components,t as is the case with
actual engineering surfaces. As a first approxi-
mation, it is reasonable to represent the hemi-
spherical reflectance p as being subdivided into
diffuse and specular components p?¢ and p$
respectively.

p=pt+ p 0]

Indeed, such a representation has already been
suggested by Seban in an incisive discussion
appended to reference 2. Moreover, magnitudes
of ps and p for metallic surfaces{ of various
roughness have been reported in reference 6.

t Added in proof: Contemporaneous studies are
presented in references 11 and 12.
t Specifically nickel.
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In the development that follows, the afore-
mentioned model of the reflection process is
employed in formulating the equations of radiant
interchange. The formulation uses concepts
that have evolved [3, 5] subsequent to the Seban
suggestion. Furthermore, specific consideration
is given here to radiant interchange in the long
cylindrical cavity, in the conical cavity, and in a
circular tube connecting isothermal environ-
ments. The governing integral equations for
these configurations are solved for various
subdivisions of the reflectance into diffuse and
specular components. Numerical results are
presented which display the effect of such
subdivisions.

THE EXCHANGE FACTOR

In problems of radiant interchange involving
specularly-reflecting, diffusely-emitting surfaces,
it has been highly convenient [3, 5] to make use
of the exchange factor. concept. It will be
demonstrated later that exchange factors for
purely specularly-reflecting surfaces can be
employed directly in the equations of radiant
interchange for surfaces having both diffuse and
specular reflectance components. Before pro-
ceeding to this generalization, it is useful to
review and illuminate the exchange factor
concept.

As introduced in reference 3 and elucidated
in reference 5, the exchange factor represents
the fraction of the diffusely-emitted radiation
that leaves one area element and arrives at a
second area element both directly and by all
possible specular inter-reflections. The exchange
factor dEq4;-aa; relating to radiation leaving
dA; and arriving at d4; has the general form

dEag;—aq; = fo + p5 1+ pl, P30 f2
+ pla pis Pis S @

The first term, fo, denotes the direct transport
between d4; and dA;; therefore, fo coincides
with the diffuse angle factor dFas;-a4;. The
second term, p3, f1, corresponds to radiant
transport between dA4; and dA4; with one inter-
vening specular reflection. The third term,
pis Pis fo, corresponds to transport with two
intervening specular reflections, and so forth.
The quantity f; is the diffuse angle factor
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between dA; and an intervening element dA41,
whose size and orientation are determined by
the following condition: namely, that radiant
energy incident on dA41; from d4; be specularly
reflected to dA; without further intervening
specular reflections. The specular reflectance at
dA11 is denoted by p3,.

The quantity f» is the diffuse angle factor
between dA4; and an element dA4;2 whose size
and orientation are constrained as follows: that
radiant energy arriving at d4;» from dA4; be
specularly reflected to dA4; with one additional
intervening specular reflection. The specular
reflectance at d412 is p3,, and pj, is the specular
reflectance at an element dAss at which the
aforementioned intervening specular surface
contact occurs. The quantity f3 and the re-
flectances p3,, p%;, and p§, are similarly in-
terpreted, and so forth.

It may be noted that in some situations, there
may be more than one path by which radiation
may pass from d4; to d4; with one intervening
specular reflection. Correspondingly, the term
P51 f1 in equation (2) would be evaluated for
each such path. A similar statement applies to
all the terms of the series.

Equation (2) represents the exchange factor
for interchange between two infinitesimal ele-
ments d4; and dd4;. Similar expressions apply
for the exchange factors Eau;-a; and E.u;—4;;
the only change is that the f quantities now
represent finite angle factors rather than
infinitesimal angle factors as before.

For cases in which the specularly-reflecting
surfaces are plane, exchange factors are readily
determined by employing the image method
from references 1 and 2. When the specularly-
reflecting surfaces are nonplanar, then the
image method cannot be applied directly.
Exchange factors corresponding to interchange
within a specularly-reflecting, diffusely-emitting
cylindrical tube have been derived in reference
3 with the aid of physical reasoning. For more
general curved-surface configurations, a formal
method of analysis has been devised [5] for
determining the exchange factors, and this has
been applied to the conical cavity and to the
cylindrical cavity of finite depth. It is not the
present purpose to dwell at length on the details
of determining exchange factors inasmuch as
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the best available methods are suitably docu-
mented in the aforementioned references. How-
ever, before concluding this section, it may be
well to state the reciprocity relationships

dA;dEqa;—a4; = dAj dEaa;-aa;;

dA; Eqag-a; = AjdEsj-as,  (32)

A EA('—Aj = A; EAj—Ai (3b)
THE EQUATIONS OF RADIANT INTERCHANGE
FOR SPECULARLY-DIFFUSELY REFLECTING
SURFACES

The equations of radiant interchange will now
be formulated for the condition where the
participating surfaces possess both specular and
diffuse reflectance components.

The starting point of the derivation is a
reconsideration of the radiosity concept. For a
diffusely-emitting and diffusely-reflecting sur-
face, the radiosity is defined as the radiant
energy leaving a surface per unit time and unit
area. Moreover, for such surfaces, it is evident
that the radiosity is the sum of the emitted
radiation and the reflected radiation.

Now, consider a surface which possesses both
specular and diffuse reflectance components.
Let H represent the radiant flux incident on a
surface per unit time and unit area. Then, for a
diffusely-emitting surface with a diffuse re-
flectance component p¢, an appropriate defini-
tion of the radiosity B is

B=coT*+ p? H @

It is evident that B represents the diffusely-
distributed radiant flux leaving a surface
element per unit time and unit area.

Although the exchange factor was originally
formulated to describe the fraction of the
diffusely-emitted radiant energy passing from an
emitter to a receiver, it applies equally well for
any diffusely-distributed radiant flux leaving a
surface. Thus, for example, if B; d4; is the flux
of diffuse radiation leaving the element dA4;,
then the amount

B;dA4; dEaa;—a4,

will arrive at the element d4;, both directly and
by all possible specular inter-reflections. With
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these ideas in hand, consideration may now be
given to the equations of radiant interchange.

Graybody enclosure theory

Attention will first be directed to generalizing
the engineering-type computation procedure
that deals with a system made up of N finite
surfaces. The basic postulates of such compu-
tations are as follows: (a) each surface is
isothermal, (b) each surface is a graybody, (¢)
each surface is a diffuse emitter, (d) each surface
is a diffuse reflector, (e¢) the radiosity is uni-
formly distributed across each surface. The
present formulation removes postulate (d) and
employs instead a reflectance model described
by equation (1).

The first step in the analysis is to derive an
expression for the radiant flux H that is incident
per unit time and unit area at a typical surface i
(area A;) in the enclosure. Consideration may
first be given to the radiation arriving at surface
i from another surface j. Now, the radiant
energy leaving surface j is composed of a
diffusely-distributed portion B;A4; plus a specu-
larly-reflected portion. The specularly-reflected
radiation is fully included in the exchange
factors. Of the diffusely-distributed radiation
leaving surface ;, a quantity B;4;E;—; arrives at
surface i both directly and by all possible inter-
vening specular inter-reflections. Moreover, by
applying the reciprocity relation (3b), the fore-
going energy quantity is equal to BjA¢F;—;.
Such contributions arrive at 4; from all of the
surfaces of the enclosure and therefore H; is
represented by the summation

N
H; =721 B Ei—g (%)
It should be emphasized that equation (5) con-
tains the contributions of both specularly and
diffusely reflected radiation, the former being
accounted for by the exchange factors.

In general, there are two thermal boundary
conditions that may be of interest: (a) prescribed
surface temperature, (b) prescribed surface heat-
transfer rate. A special case of the latter is the
adiabatic or no-flux surface. Suppose that among
the N surfaces of the enclosure, those that are
designated as 1, 2, ..., N; have prescribed
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temperatures while those designated as (N1 + 1),
(N1 + 2), ..., N have prescribed heat flux.

For the surfaces with prescribed temperature,
one may eliminate H between equations (4) and
(5) and obtain

N
Bi=eoT}+ p% > BiEi—j, 1<i:<IN1{6)
i=1

On the other hand, a somewhat different form
of the radiant flux balance is appropriate for
those surfaces having prescribed heat flux. First
of all, it may be noted that the net rate of heat
transfer Q; at a surface i is the difference
between the radiation leaving the surface and
that which is incident on the surface. The rate
at which radiation leaves the surface is

(Bi + piH)A:,

while the rate of incident radiation is H;A;.
Upon differencing these quantities and intro-
ducing H; from equation (5), one has

N
B; = Qi/ds + (1 — p}) X Bj Ei—j,
j=1

M+D<i<N ()

Upon inspecting equations (6) and (7), it is
seen that there are a total of N unknowns: Bj,
B, B3, ..., By; correspondingly, there are N
linear algebraic equations. The T¢ are pre-
scribed constants for 1 <7 <{ Nyi; while the
Q: are prescribed for (N1 + 1) << i << N. The
radiation properties for each surface are related
by

p=1—e=pt+ p¢ (8)

where the condition has been
employed.

Once the radiosities have been determined
from the solution of equations (6) and (7), then
the surface heat flux or surface temperature,
whichever is unknown, can be computed directly.
For those surfaces wherein the temperature is

prescribed, the heat-transfer rate is given by

0
A

graybody

.
;wﬁ+wom~&Lha<Nu%

In the event that one or more of the surfaces
having prescribed temperature are purely
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specularly-reflecting (p? = 0), then equation
(9) is replaced by

.
QA= aloTi— X B Ej]  (10)
z

On the other hand, for those surfaces at which
the heat flux is prescribed, the corresponding
temperature is

e By + p? (Qif Ai)

T4: s
7o a(l = p)

(Ni+1) <i<N
(11

Integral equation formulation

Consideration is once again given to an
enclosure consisting of N finite surfaces, except
that now the radiosity, temperature, and heat
flux vary with local position across each surface.
A co-ordinate system may be established such
that the position vector designating points on
surface 7 is r;, the position vector designating
points on surface j is r;, and so forth.

The equations of radiant interchange are
derived in a manner similar to that of the pre-
ceding section. For those surfaces 1 < i <\ N
for which the temperature is prescribed, the
radiant-flux equations are

N
B; (r;) = e 0 THr;) +- ey f By (ry) dEdAl--—dA]-
Jj=1 44
(12)
Furthermore, for those surfaces

MFD<Ki<N

at which the heat-transfer rate is prescribed

Bi) =)+ (1= p)

f Bj (l‘j) dEdAi~dAj (13)
Aj
in which g is the local heat-transfer rate per
unit time and unit area. Equations (12) and (13)
contain N unknown functions Bi(ry), Boa(rs),
..., Bn(ry). Correspondingly, there are N
linear integral equations. These equations are
of the same form as the integral equations of
radiant interchange for purely diffusely-re-
flecting surfaces.

Once the solutions for the B;(r;) have been
found, then the corresponding distributions of
T; and g; follow as
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qi (r)) = (e p}) [(pf + €) o T} (r:) — B; (x5)],

1<i<M (14)

Bi(rs) + pfqi(r;

O'T;1 (l‘i) = g ie(ii()l —P:)gi( ),
M+D<KiSN (15

In the former case, if p? = 0, then equation (14)
is replaced by

g (r;) = e [0 T} (r:) —glfij B; (ry) dEaas-aa,
(14a)

THE GOVERNING EQUATIONS FOR SPECIFIC
CAVITIES AND PASSAGES

Specific study will be made here of radiant
interchange in the following configurations: the
circular cylindrical cavity, the conical cavity, and
the circular tube that connects two isothermal
environments. The equations of radiant inter-
change appropriate to these problems will now
be stated. Results are presented in the final
section of the paper.

Cylindrical cavity

Consider a circular cylindrical cavity of
radius R and depth L. The cavity wall has a
uniform temperature T. Radiation emitted at
the walls is diffusely-distributed, while there are
both specular and diffuse reflectance com-
ponents. Initially, it will be assumed that there
is negligible radiant energy entering the cavity
through its opening; later, the results will be
generalized to account for such incoming
radiation. The cavity emission problem just
described has been solved for the limiting case
of purely diffuse reflectance in a number of
investigations, the most recent being reference 7.
Very recently, results for the other limit of
purely specular reflectance have been published
[5].

In the present investigation, the analysis will
be restricted to cavities whose depth L > R.
This assumption is invoked to reduce the
number of independent parameters and thereby
to bring the subsequent numerical computations
within reasonable bounds. There is no con-
ceptual difficulty in solving the cavity of finite
depth.

Let the axial distance from the cavity opening

773

be denoted by x. Then, by specializing equation
(12), one finds

B(X) = co T4 + p? °foﬂ(g) dEsc  (16)
&=

in which ¢ is a dummy variable. The exchange
factor dE;—¢ is available in references 3 and 5.
In the limit as x — oo, it is readily shown that
B — (e + p%oT,. When the dimensionless vari-
ables BfoT,) and x/R are introduced into
equation (16), it is seen that the three radiation
properties ¢, p?, and pS appear as parameters
(the latter is included in dE). However, in light
of equation (8), only two of these three proper-
ties are independent parameters that need be
prescribed.

The solution of equation (16) was obtained
numerically by an iterative technique. In
practice, the upper limit on the integral was
taken as a finite value £* selected so that B
approached very closely to the aforementioned
limiting value.

The distribution of the local heat flux as a
function of axial position is readily evaluated
from equation (14) once the solutions for B have
been obtained. In turn, the rate Q at which
radiant energy streams out of the cavity opening
is found by integrating the local g values, thus

0 = [ q2= Rdx a7
0

The overall heat-transfer results for a cavity can

be expressed in terms of an apparent emittance

€q which is the ratio of the actual heat flux Q

to that which is radiated by a black cavity, thus

ca = Qm REoTi =2 [ (g/o T4) d(x/R) (I7a)
0

The analysis will now be extended to include
radiant energy entering the cavity from the
external environment. Suppose that the in-
coming radiation is uniformly and diffusely
distributed across the cavity opening and that
the magnitude of such radiation is expressed as
an equivalent blackbody temperature Te.. Then,
the preceding analysis goes through as before,
except that wherever T2 formerly appeared,
one now writes 75 — T4,
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Conical cavity

The next configuration to be studied is a
conical cavity having an isothermal wall at
temperature 7y,. The cone half-opening angle is
@, while the slant-height is L; x measures
distances along the slant height from the cone
vertex. Results for the limiting cases of purely
diffuse reflection and purely specular reflection
are respectively available in references 8 and 5.

For the situation in which the incoming
radiation is negligible, the specialization of
equation (12) leads to

B(x) = co T + pt [ B(&) dEss  (18)
£~0

in which £ is once again a dummy variable. The
exchange factor appearing under the integral
sign has been derived in reference 5. If equa-
tion (18) is rephrased using dimensionless
variables B/e¢T2 and x/L, it is found that four
parameters appear: the radiation properties e,
p? and p%, and the half-opening angle ¢ (the
last two of these are contained in dE). In view
of the relationship between the properties,
equation (8), it is evident that solutions of the
integral equation (18) will depend on the
specification of three independent parameters.

Equation (18) was solved numerically by an
iterative procedure and corresponding local
heat flux values were deduced from equation
(14). In turn, the overall heat-transfer rate Q
was computed by integration of the local heat
flux

L
0= {g2nxsingdx 19
o

In terms of the apparent emittance ¢4, equation
(19) becomes

Y

€g T Ty
T altsinfgoTl

w

(192)

The foregoing analysis can be generalized to
include radiant energy entering the cavity from
the external environment by incorporating
modifications identical to those outlined for the
circular cylindrical cavity.
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Transmission of radiant energy through a tube

Consider next a circular tube of length L and
radius R that connects two isothermal environ-
ments. The blackbody temperature of the
environment adjacent to the left-hand end of the
tube is 77, while the blackbody temperature of
the environment adjacent to the right-hand
end of the tube is 7. The axial co-ordinate x
measures distances from the left-hand end. It is
desired to find the radiant energy that is
transported through the tube under the con-
dition that the tube wall is locally adiabatic,
i.e. ¢ = 0. Results for the limiting cases of
purely diffuse reflection and purely specular
reflection have been published respectively in
references 3 and 9 and in reference 3.

In carrying out the analysis, it is advantageous
to note that the problem is linear in the fourth
power of the temperature. Thus, without loss of
generality, one can conceive of the tube as
having an environment at zero temperature at
its right-hand end, an environment at tempera-
ture 77 — T4 at its Izft-hand end, and a local
wall temperature T3(x) — T} at x.

The governing integral equation is most
easily derived by specializing equation (13).
Upon applying this equation at a typical point
x on the tube wall and setting ¢ = 0, one gets

B(x) = (1 — p%)[B1 Ez-1 + B2 Ez
L
+ B dE:—] (20
&0
The first two terms in the brackets correspond to
radiant energy arriving at location x from the

environments. Since the latter are black
radiators, one can write

Bi=o(T{—T%, B2=0 (21

Moreover, by applying equation (15} with
g = 0, there follows

B(x) = (1 — p?) o [Ty(x) — T4,
B(§) = (1 — p)[TH& — T4

Upon introducing these into equation (20},
there is obtained

(22)

009 = Eser (1 = p9) [ 0O dEe s 2)
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wherein
§=T4—THT1—TH (23a)

Equation (23) is the governing integral equation
for the axial distribution of the tube wall
temperature.

The net rate of energy throughflow from
environment 1 to environment 2, denoted by Q,
is the difference between the radiant energy
streaming into and out of the tube opening at 1,
thus

O RA(TS =T =1=(1 =) [ B9 dE1-2 24)

Upon inspecting equations (23) and (24) and
noting that dE contains p#® (but no other radia-
tion property), it is seen that the temperature
distribution and the energy transport depend
on a single radiation property, pS. In other
words, the results are determined once and for
all as soon as p* is specified, regardless of the
value of the diffuse component p%.

In addition to p¢, the solutions also depend
parametrically on the tube aspect ratio L/R. The
exchange factors appearing in equations (23)
and (24) are available in references 3 and 5.
Numerical solutions of the integral equation (23)
were carried out by an iteration procedure.

RESULTS
Cylindrical cavity
Results for the overall and the local heat
transfer for the cylindrical cavity of infinite

€
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[

R RPN NP RPN U P PN IO AP PO O P
o o2 04 06 OB 10
#5/p
Fic. 1. Overall heat-transfer results for deep cylindrical
cavities.
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depth are respectively presented in Figs. 1 and 2.
Figure 1 consists of two parts. The upper por-
tion is a plot of the apparent emittance of the
cavity e {see equation (17a) for definition] as a
function of the emittance e of the cavity wall.
Curves are shown for cases in which the re-
flectance is purely specular, ps/p = 1; purely
diffuse, ps/p =0; or is partly specular and
partly diffuse, p%/p = 0-25, 0-5, and 0-75. The
lower portion of the figure is a cross plot of the
information appearing in the upper portion. It
shows, for various fixed values of surface emit-
tance, the variation of ¢; as the reflectance
ranges from purely diffuse to purely specular.

By inspection of Fig. 1, it is seen that for any
given surface emittance, the radiant emission of
the cavity is greatest when the wall is specularly
reflecting and least when the wall is diffusely
reflecting. Cavities having surface reflectances
that are partly specular and partly diffuse lie
intermediate between the aforementioned limits.
The increase of e, with increasing p%/p is most
marked for surfaces characterized by small
values of the emiitance . Moreover, for such
surfaces, the sharpest increases in e, occur as
p%/p approaches unity.

Further study reveals that in all cases, the
apparent emittance e, exceeds the surface
emittance «; this is especially marked for
surfaces of lower emittance and is further
accentuated as the reflectance becomes more
specular.

Consideration may now be given to the local
heat-transfer results that are exhibited in Figs.
2(a), 2(b), and 2(c). These figures correspond

LI N O SO0 L

I[IP:'-/Pl]IIII

x/R

FiG. 2(a). Local heatt-ransfer and radiosity distributions
for deep cylindrical cavities, e = 0-1.
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FiG. 2(b). Local heat-transfer and radiosity distributions
for deep cylindrical cavities, ¢ = 0-5.
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F1G. 2(c). Local heat-transfer and radiosity distributions
for deep cylindrical cavities, ¢ = 0-9.

respectively to surface emittances ¢ of 0-1, 0-5,
and 0-9. Results for other values of ¢ are
available in reference 10, but these must be
omitted here due to space limitations. Each of
the aforementioned figures contains two sets of
curves. Those sloping downward to the right
represent the local heat flux and are referred
to the left-hand ordinate, while those sloping
upward to the right represent the local radiosity
and are referred to the right-hand ordinate.
The abscissa is the axial distance from the cavity
opening.

The figures show that in the neighborhood of
the cavity opening, the local heat flux is largest
when the cavity wall is a pure diffuse reflector
and decreases as the specular component
increases. On the other hand, in the interior of
the cavity, an opposite trend exists; that is, the
local heat flux is largest at a specularly-reflecting
surface and is least at a diffusely-reflecting
surface. These trends are most strongly in
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evidence at lower values of the surface emit-
tance e.

As to the radiosity, the highest values at any
fixed emittance e correspond to the diffusely-
reflecting surface; this applies at any axial
location.

Conical cavity

The governing integral equation (18) for the
conical cavity has been solved for parametric
values of e(==1 — p), of p3/p, and of the half-
opening angle ¢. The corresponding local and
overall heat-flux results were computed from
equations (14) and (19a). This information is
presented in Figs. 3 and 4, respectively for the
overall and local heat fluxes.

o

09

[ek:}

o7

o4

03

i ;
10 20 30 . 40 : 50 60 70 BO 20
¢ (DEGREES)

Fic. 3. Overall heat-transfer results for conical cavities.

Attention may first be directed to Fig. 3,
wherein there is plotted the apparent emittance
of the cavity ¢, as a function of the cone half-
opening angle ¢. The curves are labelled accord-
ing to the surface emittance e. Furthermore, for
each e, results are shown for reflectances that
are purely specular, pf/p = 1; purely diffuse,
pf/p = 0; and for half specular and half diffuse,
pilp = 0-5.

Inspection of the figure indicates that the
apparent emittance increases monotonically
with increasing p5/p; thus, at a fixed surface
emittance e, the specularly-reflecting cavity
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radiates most energy and the diffusely-reflecting
cavity least. The curves corresponding to
p?/p =05 do not necessarily lie half way
between those for purely specular and purely
diffuse reflectance, although this behavior is
nearly achieved when the surface emittance is
high. At lower values of surface emittance, the
curves for p#¥/p = 0-5 lie closer to those for
diffuse reflectance when ¢ is small and closer
to those for specular reflectance when ¢ takes
on intermediate values. For still larger cone
opening angles, all results approach the limit
eg = e. In general, it can be stated that the
apparent emittance becomes independent of the
directional distribution of the reflectance for
@ = 40°.

A graphical presentation of the axial distri-
bution of the local heat flux is made in Figs. 4(a),
4(b), and 4(c), respectively for € = 0-1, 0-5, and
0-9. This information is given as a function of
x/L, the fractional distance along the slant

(] e e [t B S B A B S S B e B B S s

o /—¢-ao;,so- [35° 300 200 g

008t
g
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006! _
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- = /// I -
L~ - I 0
oozf - —_——0
-
L — 801 ]
P S U TR I B T | P B

FiG. 4(a). Local heat-transfer distributions for conical
cavities, e = 0-1.

[+]

o (3] 02

F1G. 4(b). Local heat-transfer distributions for conical
cavities, e = 0-5.
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09

Fi1G. 4(c). Local heat-transfer distributions for conical
cavities, ¢ = 09,

height (x = 0 is at the cone apex). On each
figure, results are shown for several cone half-
opening angles between 10° and 80°. Moreover,
for each opening angle, curves ate plotted for
three reflectance conditions, p%/p =1, 0-5, and
0.

In general, for any fixed e, the local heat flux
at any position on the cavity wall increases
monotonically with p#/p. The results are par-
ticularly sensitive to p#/p at locations nearsr the
cone apex and are quite insensitive to p%/p at
locations near the cavity opening. Moreover,
cones having small opening angles are much
more sensitive to p8/p than are cones with large
opening angles. Finally, it may be noted that
cavities with low surface emittance are also
more sensitive to p%/p than are cavities with
highly emissive walls.

Radiation transport through a circular tube

Solutions of the governing integral equation
(23) have been carried out for p?® ranging from
0 to 1-0 and for L/R ranging from 1 to 40. Each
of these solutions is, in itself, the axial distri-
bution of the adiabatic wall temperature
corresponding to the prescribed values of the
parameters. The presentation of this informa-
tion is quite space consuming and is therefore
omitted here; however, a complete set of graphs
is available in the thesis [10] from which this
paper is drawn.
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Fig. 5. Transport of radiant energy through a circular
tube.

The radiant energy Q transmitted through the
tube has been evaluated from equation (24) and
is displayed in Fig. 5. The abscissa of the figure
is the specular reflectance component p$, and
the curves are labelled with the tube aspect
ratio. From the figure, it is seen that for a fixed
tube geometry, the radiant transmission de-
creases steadily as the specular reflectance
decreases. The results for tubes that are relatively
long are particularly sensitive to p$, especially
at Jarger values of ps where the curves are steep.
In general, for given thermal conditions, the
radiant transmission through short tubes is
greater than that through long tubes, regardless
of the value of p5.

It is interesting to observe that the radiant
transport through a tube having both specular
and diffuse reflectance components is identical
to the transmission through a purely specularly-
reflecting tube, provided that both tubes have
equal values of p?%. This characteristic permits

E. M. SPARROW and S. H. LIN

comparison of the present results with those of
reference 3, the latter having been derived for
the specular case. For those conditions where
comparisons are possible, there appears to be
satisfactory agreement between the two sets of
results.
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Résumé—Une méthode d’analyse a été obtenue pour déterminer I’échange par rayonnement entre
des surfaces, chacune d’elles pouvant avoir 2 la fois des composantes de réflexion spéculaire et diffuse.
La formulation emploie et généralise le concept du facteur d’échange (qui a été initialement 1mag1ne
pour des surfaces a réflexion spéculaire) et le concept de la radiosité (qui a été initialement imaginé pour
des surfaces 2 réflexion diffuse). Des formes variées de la méthode analytique sont présentées qui
conviennement soit pour des calculs globaux intéressant I'ingénieur ou pour des recherches locales
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plus détaillées. On a considéré spécifiquement d’une fagon analytique et numérique I’échange par

rayonnement dans des cavités cylindriques et coniques et le transport par rayonnement a travers

un tube circulaire. Des résultats sont présentés pour diverses subdivisions du rayonnement réfléchi

par la surface en composantes spéculaire et diffuse. En général, on trouve que le rayonnement sortant

d’une cavité croit lorsque la composante spéculaire devient une fraction plus grande du rayonnement

réfléchi de la surface. Une conclusion semblable se rapport & la transmission du rayonnement a travers
un tube.

Zusammenfassung—Zur Bestimmung des Strahlungsaustauches zwischen Oberflichen, von denen
jede sowohl eine spiegelnde wie auch eine differse Komponente des Reflexionsvermogens hat,
wurde eine Methode zum Analysieren aufgestellt. Die Formulierung verwendet und verallgemeinert
das Austauschfaktorkonzept (das urspriinglich fiir spiegelnd reflektierende Oberflichen aufgestellt
wurde) und das Strahlungskonzept (das urspriinglich fiir diffus-reflektierende Oberfiichen aufgestellt
wurde).

Es werden verschiedene Formen von analytischen Methoden angefiihrt, die entweder fiir Pauschal-
berechnungen des Ingenieurs oder fiir detaillierte drtliche Untersuchgungen geeignet sind. Besondere
analytische und numerische Beriicksichtigung fand der Strahlungsaustausch in zylindrischen und
konischen Vertiefungen und der Strahlungstransport durch ein Kreisrohr, Fiir verschiedene Unter-
teilungen des Oberflachenreflexionsfaktors in spiegelnde und diffuse Komponenten werden Ergebnisse
angegeben. Allgemein findet man, dass die Strahlungsdichte aus einer Vertiefung zunimmt, wenn die
spiegelnde Komponente als grosserer Bruchteil des Oberflichenreflexionsvermégens auftritt. Eine
dhnliche Feststellung lésst sich fiir die Ubertragung der Strahlungsenergie durch ein Rohr machen.

AnHOoTamMa—Pa3paboTaHa METOTMKA AHAIN3A [JIA ONpefejeHUA JY4YuCTOro oOMeHa Memmy
MOBEPXHOCTAMY,, KaIasl B3 KOTOPOI MOoxKeT 061aiaTh KaK 3epRaIbHOM, Tak i Au{Qy3HOHHOR
KOMITOHEHTAMHU OTpaykaTenbHON cnocoGHocT. PopMYyIHPOBKA UCIOAB3YeT M 0GoOmaeT mo-
HsTHE 0GMEHHOro Koa(dumueHTa (KOTOPHI MEPBOHAYAILHO OLI BBeHeH 1A fuddysmonHO-
OTPaKAIOIINX IIOBepXHOcTelt). JJaHH pasiIuYHHe AHANUTHYECKUHE METO[b, NPUIOJHBIE KaK
IJIA PA3NMYHOrO POJA HHMKEeHEPHEIX PacueToB, TAK M [JIA (oiee [AeTaJbHBIX UCCIETOBAHUIA,
Ocofioe BHHUMAHHE YHENEHO AHAIUTHIECKOMY H YHCIEGHHOMY MCCIAefI0BAHUI0 JYYUCTOTO
o0MeHa B UMIMHAPUYECKUX M KOHMYECKUX IIOJIOCTAX M JIYUYHCTOMY IIePEHOCY 4epes KPYTIIylo
TpyOy. IIpemcTaBieHH pe3yJdbTATH [JIA Pa3iIMYHEX BUAOB OTPAKATEILHOM CHOCOGHOCTH
HOBepXHOCTH. Boofie, HAlAEHO, YTO JMYYMCTHH IOTOK, MCXOAAMI U3 IOJOCTH, yBeJIHUU-
BAeTCA 110 Mepe TOT0, KAK 3ePKAJbHAA KOMIIOHEHTA B OTPAKATENbHOMN CIOCOGHOCTH IOBEpPX-
HOCTH pacTeT. AHAJOTMYHOE YTBED:ACHNUE CIPaBEeIJNBO [JIA CIydas Iepemadd JydmcToi
9HEpruM 4depe3 TPYORY.
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