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Abstract-A method of analysis has been devised for determining the radiant interchange among 
surfaces, each of which may have both specular and diffuse reflectance components. The formulation 
uses and generalizes the exchange factor concept (which was initially devised for specularly-reflecting 
surfaces) and the radios&y concept (which was initially devised for diffusely-reflecting surfaces). Various 
forms of the analytical method are presented that are suitable either for overall engineering-type 
computations or for more detailed local investigations. Specific analytical and numerical consideration 
is given to radiant interchange in cylindrical and conical cavities and to radiant transport through a 
circular tube. Results are presented for various subdivisions of the surface reflectance into specular 
and diffuse components. In general, it is found that the radiant efflux from a cavity increases as the 
specular component becomes a larger fraction of the surface reflectance. A similar statement applies 

for the transmission of radiant energy through a tube. 
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NOMENCLATURE 

surface area; 
radiosity ; 
exchange factor ; 
angle factor; 
incident energy/time-area; 
length or depth; 
overall heat-transfer rate; 
local heat-transfer rate/area; 
radius; 
position co-ordinate; 
axial co-ordinate ; 
absolute temperature; 
surface emittance; 
apparent emittance of cavity; 
dimensionless temperature, equation 

(23a) ; 
dummy variable ; 
hemispherical reflectance; 
specular reflectance component ; 
diffuse reflectance component; 
Stefan-Boltzmann constant; 
cone half-opening angle. 

INTRODUCTION 
IN COMPUTING the exchange of thermal radiation 
between surfaces, it has been customary to 
formulate the equations of radiant interchange 

under the assumption that the participating 
surfaces are perfectly diffuse reflectors. Recently, 
in recognition of the fact that many real surfaces 
do possess a significant specular component, 
there have appeared several papers [l-5] dealing 
with radiant interchange among surfaces that 
are perfectly specular reflectors. Consideration 
has also been extended to enclosures in which 
some of the surfaces are specularly-reflecting 
and others are diffusely-reflecting [2, 31. 

The present investigation is concerned with 
surfaces that possess both specular and diffuse 
reflectance components,t as is the case with 
actual engineering surfaces. As a first approxi- 
mation, it is reasonable to represent the hemi- 
spherical reflectance p as being subdivided into 
diffuse and specular components p” and ps 
respectively. 

p = Pd + PS (1) 

Indeed, such a representation has already been 
suggested by Seban in an incisive discussion 
appended to reference 2. Moreover, magnitudes 
of ps and p for metallic surfaces: of various 
roughness have been reported in reference 6. 

t Added in proof: Contemporaneous studies are 
presented in references 11 and 12. 

$ Specifically nickel. 

769 



770 E. M. SPARROW and S. H. LIN 

In the development that follows, the afore- 
mentioned model of the reflection process is 
employed in formulating the equations of radiant 
interchange. The formulation uses concepts 
that have evolved [3, 51 subsequent to the Seban 
suggestion. Furthermore, specific consideration 
is given here to radiant interchange in the long 
cylindrical cavity, in the conical cavity, and in a 
circular tube connecting isothermal environ- 
ments. The governing integral equations for 
these configurations are solved for various 
subdivisions of the reflectance into diffuse and 
specular components. Numerical results are 
presented which display the effect of such 
subdivisions. 

THE EXCHANGE FACTOR 

In problems of radiant interchange involving 
specularly-reflecting, diffusely-emitting surfaces, 
it has been highly convenient [3, 51 to make use 
of the exchange factor concept. It will be 
demonstrated later that exchange factors for 
purely specularly-reflecting surfaces can be 
employed directly in the equations of radiant 
interchange for surfaces having both diffuse and 
specular reflectance components. Before pro- 
ceeding to this generalization, it is useful to 
review and illuminate the exchange factor 
concept. 

As introduced in reference 3 and elucidated 
in reference 5, the exchange factor represents 
the fraction of the diffusely-emitted radiation 
that leaves one area element and arrives at a 
second area element both directly and by all 
possible specular inter-reflections. The exchange 
factor dEdAi-dAi relating to radiation leaving 
dAr and arriving at dAg has the general form 

dEdAi_dAi =.fO + PSlfl $_ PTe P$zfi 

+ Pia Pi3 Pi3 f3 + . *. (2) 

The first term, fa, denotes the direct transport 
between dAt and dA*; therefore, fo coincides 
with the diffuse angle factor dFd.+-d+ The 
second term, piI ji, corresponds to radiant 
transport between dAt and dAj with one inter- 
vening specular reflection. The third term, 

PSZ P;z_fk corresponds to transport with two 
intervening specular reflections, and so forth. 
The quantity fr is the diffuse angle factor 

between dAi and an intervening element dAit 
whose size and orientation are determined by 
the following condition: namely, that radiant 
energy incident on dAll from dAi be specularly 
reflected to dAf without further intervening 
specular reflections. The specular reflectance at 
dAir is denoted by p,ll. 

The quantity f2 is the diffuse angle factor 
between dAi and an element dA1z whose size 
and orientation are constrained as follows : that 
radiant energy arriving at dAl2 from dAi be 
specularly reflected to dAj with one additional 
intervening specular reflection. The specular 
reflectance at dA12 is p”12, and p?& is the specular 
reflectance at an element dAee at which the 
aforementioned intervening specular surface 
contact occurs. The quantity f3 and the re- 
flectances p;,, p&, and pi3 are similarly in- 
terpreted, and so forth. 

It may be noted that in some situations, there 
may be more than one path by which radiation 
may pass from dAi to dA$ with one intervening 
specular reflection. Correspondingly, the term 
piI fi in equation (2) would be evaluated for 
each such path. A similar statement applies to 
all the terms of the series. 

Equation (2) represents the exchange factor 
for interchange between two infinitesimal ele- 
ments dAi and dAj. Similar expressions apply 
for the exchange factors Ed.di-Ai and EA~-.~~; 
the only change is that the f quantities now 
represent finite angle factors rather than 
infinitesimal angle factors as before. 

For cases in which the specularly-reflecting 
surfaces are plane, exchange factors are readily 
determined by employing the image method 
from references 1 and 2. When the specularly- 
reflecting surfaces are nonplanar, then the 
image method cannot be applied directly. 
Exchange factors corresponding to interchange 
within a specularly-reflecting, diffusely-emitting 
cylindrical tube have been derived in reference 
3 with the aid of physical reasoning. For more 
general curved-surface configurations, a formal 
method of analysis has been devised [5] for 
determining the exchange factors, and this has 
been applied to the conical cavity and to the 
cylindrical cavity of finite depth. It is not the 
present purpose to dwell at length on the details 
of determining exchange factors inasmuch as 
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the best available methods are suitably docu- 
mented in the aforementioned references. How- 
ever, before concluding this section, it may be 
well to state the reciprocity relationships 

dAi dEdA,-dAf = dAj dEdAj_aAi; 

dAi Ed/i-A1 = Aj ‘%+dAi 

Ai EA<-A~ = Aj -&-A~ 

W 

WI 

THE EQUATIONS OF RADIANT INTERCHANGE 
FOR SPECULARLY-DIFFUSELY REFLECTING 

SURFACES 

The equations of radiant interchange will now 
be formulated for the condition where the 
participating surfaces possess both specular and 
diffuse reflectance components. 

The starting point of the derivation is a 
reconsideration of the radiosity concept. For a 
diffusely-emitting and diffusely-reflecting sur- 
face, the radiosity is defined as the radiant 
energy leaving a surface per unit time and unit 
area. Moreover, for such surfaces, it is evident 
that the radiosity is the sum of the emitted 
radiation and the reflected radiation. 

Now, consider a surface which possesses both 
specular and diffuse reflectance components. 
Let H represent the radiant flux incident on a 
surface per unit time and unit area. Then, for a 
diffusely-emitting surface with a diffuse re- 
flectance component pd, an appropriate defini- 
tion of the radiosity B is 

B=== EoT~+ pdH (4) 

It is evident that B represents the dzjk~$~- 
distributed radiant flux leaving a surface 
element per unit time and unit area. 

Although the exchange factor was originally 
formulated to describe the fraction of the 
diffusely-emitted radiant energy passing from an 
emitter to a receiver, it applies equally well for 
any diffusely-distributed radiant flux leaving a 
surface. Thus, for example, if Bi dAt is the flux 
of diffuse radiation leaving the element dAr, 
then the amount 

Br dAz ‘=d.+dA, 

will arrive at the element dAf, both directly and 
by all possible specular inter-reflections. With 

these ideas in hand, consideration may now be 
given to the equations of radiant interchange. 

Graybody enclosure theory 
Attention will first be directed to generalizing 

the engineering-type computation procedure 
that deals with a system made up of N finite 
surfaces. The basic postulates of such compu- 
tations are as follows: (a) each surface is 
isothermal, (b) each surface is a graybody, (c) 
each surface is a diffuse emitter, (d) each surface 
is a diffuse reflector, (e) the radiosity is uni- 
formly distributed across each surface. The 
present formulation removes postulate (d) and 
employs instead a reflectance model described 
by equation (1). 

The first step in the analysis is to derive an 
expression for the radiant flux H that is incident 
per unit time and unit area at a typical surface i 
(area Ad) in the enclosure. Consideration may 
first be given to the radiation arriving at surface 
i from another surface j. Now, the radiant 
energy leaving surface j is composed of a 
diffusely-distributed portion BjAf plus a specu- 
larly-reflected portion. The specularly-reflected 
radiation is fully included in the exchange 
factors. Of the diffusely-distributed radiation 
leaving surface I, a quantity B~AJEI-r arrives at 
surface i both directly and by all possible inter- 
vening specular inter-reflections. Moreover, by 
applying the reciprocity relation (3b), the fore- 
going energy quantity is equal to BfArEi-j. 
Such contributions arrive at Ac from all of the 
surfaces of the enclosure and therefore Hi is 
represented by the summation 

N 

Hi = 2 Bj Etvj (5) 
j=l 

It should be emphasized that equation (5) con- 
tains the contributions of both specularly and 
diffusely reflected radiation, the former being 
accounted for by the exchange factors. 

In general, there are two thermal boundary 
conditions that may be of interest : (a) prescribed 
surface temperature, (b) prescribed surface heat- 
transfer rate. A special case of the latter is the 
adiabatic or no-flux surface. Suppose that among 
the N surfaces of the enclosure, those that are 
designated as 1, 2, . . . , NI have prescribed 
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temperatures while those designated as (N1 $- 1), specularly-reflecting (pd = 0), then equation 

(Nl + 2), . . . , N have prescribed heat flux. (9) is replaced by 
For the surfaces with prescribed temperature, s 

one may eliminate H between equations (4) and 
(5) and obtain 

On the other hand, for those surfaces at which 
the heat flux is prescribed, the corresponding 
temperature is 

On the other hand, a somewhat different form 
of the radiant flux balance is appropriate for 
those surfaces having prescribed heat flux. First 
of all, it may be noted that the net rate of heat 
transfer Qi at a surface i is the difference 
between the radiation leaving the surface and 
that which is incident on the surface. The rate 
at which radiation leaves the surface is 

u T4 = et & --t P? (Qi/Ail 
1 Ei (1 - y;j 

-m, (N1fl)<: ::I\: 

(11) 

Integral equation ,formulation 

(Bi + pfHi)Ai, 

while the rate of incident radiation is HiAt. 
Upon differencing these quantities and intro- 
ducing Hi from equation (5), one has 

Consideration is once again given to an 
enclosure consisting of N finite surfaces, except 
that now the radio&y, temperature, and heat 
flux vary with local position across each surface. 
A co-ordinate system may be established such 
that the position vector designating points on 
surface i is rt, the position vector designating 
points on surface j is ri, and so forth. 

The equations of radiant interchange are 
derived in a manner similar to that of the pre- 
ceding section. For those surfaces 1 < i ii Nl 
for which the temperature is prescribed, the 
radiant-flux equations are 

Bi = QilA< -t (1 - p;) 5 BI &+, 
j=l 

(Nl+ l)<i<N (7) 

Upon inspecting equations (6) and (7), it is 
seen that there are a total of N unknowns: BI, 

B2, BJ, . . . , BN; correspondingly, there are N 
linear algebraic equations. The T,4 are pre- 
scribed constants for 1 < i < Nl; while the 

, . 
Qi are prescribed for (Nl + 1) cl, z :< N. The 
radiation properties for each surface are related 

by 
pEl-E=pd+ps (8) 

where the graybody condition has been 
employed. 

Once the radiosities have been determined 
from the solution of equations (6) and (7), then 
the surface heat flux or surface temperature, 
whichever is unknown, can be computed directly. 
For those surfaces wherein the temperature is 
prescribed, the heat-transfer rate is given by 

Qi - 2 [(pf + EC) CT TY - BJ, 
Ai - pp 

1 : .l i -< Nl (9) 

In the event that one or more of the surfaces 
having prescribed temperature are purely 

& (ri) = ct u Tfh) + pf k s Bj (rj) d&+d.+ 
j=l A, 

(12) 

Furthermore, for those surfaces 

(Nl + 1) < i < N 

at which the heat-transfer rate is prescribed 

Bg (ri) = qi (ri) + (1 -- p,S) 5 

in which q is the local heat-transfer rate per 
unit time and unit area. Equations (12) and (13) 
contain N unknown functions Bl(n), B2(r2), 
. . . ) Bx(rN). Correspondingly, there are N 
linear integral equations. These equations are 
of the same form as the integral equations of 
radiant interchange for purely diffusely-re- 
flecting surfaces. 

Once the solutions for the B&c) have been 
found, then the corresponding distributions of 
Ti and qi follow as 
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42 (rd = (G/P$ [(pf + 4 0 T,4 (rd - Bt (rt)], be denoted by x. Then, by specializing equation 

1 <i<Nl (14) (12), one finds 

u T,4 (rt) = 
~6 Bi (4 + pf qa (4 

ct(l-fp,s) ’ 

(Nl + 1) < i < N (1% 
In the former case, if pd = 0, then equation (14) 
is replaced by 

qi (ri) = pi [u T,4 (rg) -,$JA~ Bj (rf) d&iAt-dA, 

(14a) 

THE GOVERNING EQUATIONS FOR SPECIFIC 

CAVITIES AND PASSAGES 

Specific study will be made here of radiant 
interchange in the following configurations : the 
circular cylindrical cavity, the conical cavity, and 
the circular tube that connects two isothermal 
environments. The equations of radiant inter- 
change appropriate to these problems will now 
be stated. Results are presented in the final 
section of the paper. 

Cylindrical cavity 
Consider a circular cylindrical cavity of 

radius R and depth L. The cavity wall has a 
uniform temperature Tw. Radiation emitted at 
the walls is diffusely-distributed, while there are 
both specular and diffuse reflectance com- 
ponents. Initially, it will be assumed that there 
is negligible radiant energy entering the cavity 
through its opening; later, the results will be 
generalized to account for such incoming 
radiation. The cavity emission problem just 
described has been solved for the limiting case 
of purely diffuse reflectance in a number of 
investigations, the most recent being reference 7. 
Very recently, results for the other limit of 
purely specular reflectance have been published 
[51. 

In the present investigation, the analysis will 
be restricted to cavities whose depth L B R. 
This assumption is invoked to reduce the 
number of independent parameters and thereby 
to bring the subsequent numerical computations 
within reasonable bounds. There is no con- 
ceptual difficulty in solving the cavity of finite 
depth. 

Let the axial distance from the cavity opening 

B(x) = EU T; + pd 7 B(t) dE,-t (16) 
.$=o 

in which 5 is a dummy variable. The exchange 
factor dE,-5 is available in references 3 and 5. 
In the limit as x + co, it is readily shown that 
B + (E + pd)aT$ When the dimensionless vari- 
ables BIoT$ and x/R are introduced into 
equation (16) it is seen that the three radiation 
properties E, pd, and ps appear as parameters 
(the latter is included in dE). However, in light 
of equation (S), only two of these three proper- 
ties are independent parameters that need be 
prescribed. 

The solution of equation (16) was obtained 
numerically by an iterative technique. In 
practice, the upper limit on the integral was 
taken as a finite value [* selected so that B 
approached very closely to the aforementioned 
limiting value. 

The distribution of the local heat flux as a 
function of axial position is readily evaluated 
from equation (14) once the solutions for B have 
been obtained. In turn, the rate Q at which 
radiant energy streams out of the cavity opening 
is found by integrating the local q values, thus 

Q=Tq2rrRdx 
0 

(17) 

The overall heat-transfer results for a cavity can 
be expressed in terms of an apparent emittance 
E~ which is the ratio of the actual heat flux Q 
to that which is radiated by a black cavity, thus 

Ed = Q[rr R2 (T T$ = 2 1 (q,ia T;1) d(xlR) (17a) 

The analysis will now be extended to include 
radiant energy entering the cavity from the 
external environment. Suppose that the in- 
coming radiation is uniformly and diffusely 
distributed across the cavity opening and that 
the magnitude of such radiation is expressed as 
an equivalent blackbody temperature T,. Then, 
the preceding analysis goes through as before, 
except that wherever Ti formerly appeared, 
one now writes T$ - T$ 
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Conical cavity .Transmission qf radiant energy through a tube 
The next configuration to be studied is a 

conical cavity having an isothermal wall at 
temperature Tw. The cone half-opening angle is 
F, while the slant-height is L; .X measures 
distances along the slant height from the cone 
vertex. Results for the limiting cases of purely 
diffuse reflection and purely specular reflection 
are respectively available in references 8 and 5. 

For the situation in which the incoming 
radiation is negligible, the specialization of 
equation (12) leads to 

B(x) = EU T;; + p” f B(t) dE+ (18) 
E-0 

in which 6 is once again a dummy variable. The 
exchange factor appearing under the integral 
sign has been derived in reference 5. If equa- 
tion (18) is rephrased using dimensionless 
variables B/aT$ and x/L, it is found that four 
parameters appear: the radiation properties E, 
p”: and ~8, and the half-opening angle q (the 
last two of these are contained in dE). In view 
of the relationship between the properties, 
equation (8), it is evident that solutions of the 
integral equation (18) will depend on the 
specification of three independent parameters. 

Consider next a circular tube of length L. and 
radius R that connects two isothermal environ- 
ments. The blackbody temperature of the 
environment adjacent to the left-hand end of the 
tube is 7’1, while the blackbody temperature of 
the environment adjacent to the right-hand 
end of the tube is Tz. The axial co-ordinate s 
measures distances from the left-hand end. It is 
desired to find the radiant energy that is 
transported through the tube under the con- 
dition that the tube wall is locally adiabatic, 
i.e. q = 0. Results for the limiting cases of 
purely diffuse reflection and purely specular 
reffection have been published respectively in 
references 3 and 9 and in reference 3. 

In carrying out the analysis, it is advantageous 
to note that the problem is linear in the fourth 
power of the temperature. Thus, without loss of 
generality, one can conceive of the tube as 
having an environment at zero temperature at 
its right-hand end, an environment at tempera- 
ture Tf - Ti at its left-hand end, and a local 
wall temperature T&Y) -- Ti at X. 

Equation (18) was solved numerically by an 
iterative procedure and corresponding local 
heat flux values were deduced from. equation 
(14). In turn, the overall heat-transfer rate Q 
was computed by integration of the local heat 
AUX 

The governing integral equation is most 
easily derived by specializing equation (13). 
Upon applying this equation at a typical point 
x on the tube wall and setting q = 0, one gets 

(19) 

B(x) = (1 - p”) [Bi Ez.-1 f Bz ES4 

-$$(O dK-d (20) 

The first two terms in the brackets correspond to 
radiant energy arriving at location x from the 

In terms of the apparent emittance Ed, equation 
(19) becomes 

environments. Since the latter are 
radiators, one can write 

black 

B1 = CT (T; - Tt), Bs I= 0 

Moreover, by applying equation (I 5) 
4 = 0, there follows 

(21) 

with 

The foregoing analysis can be generalized to 
include radiant energy entering the cavity from 
the external enviro~ent by iuco~orating 
modifications identical to those outlined for the 
circular cylindrical cavity. 

B(x) = (1 - P”) 0 [T:(x) - T:], 

HO = (1 - P”) [T:W - T;l 

Upon introducing these into equation 
there is obtained 

06) = Ez-I + (1 - p”) 7 6(E) dE,-S 
p-0 

(22) 

(20), 

(23) 
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wherein 

e = ([r$ - T$/(T? - 7-i) (23a) 

Equation (23) is the governing integral equation 
for the axial dist~bution of the tube wall 
temperature. 

The net rate of energy throughflow from 
environment 1 to environment 2, denoted by Q, 
is the difference between the radiant energy 
streaming into and out of the tube opening at 1, 
thus 

Upon inspecting equations (23) and (24) and 
noting that dE contains pa (but no other radia- 
tion property), it is seen that the temperature 
dist~bution and the energy transport depend 
on a single radiation property, ps. In other 
words, the results are determined once and for 
all as soon as ps is specified, regardless of the 
value of the diffuse component pd. 

In addition to ps, the solutions also depend 
parametrically on the tube aspect ratio L/R. The 
exchange factors appearing in equations (23) 
and (24) are available in references 3 and 5. 
Numerical solutions of the integral equation (23) 
were carried out by an iteration procedure. 

RESULTS 

Cylindrical cm&y 
Results for the overall and the local heat 

transfer for the cylindrical cavity of infinite 

8 
0 0.1 o-2 0.3 0.4 05 0.6 0’7 D8 0.9 I.0 

I1 I (, ,I, I, /, I, v,,, I 

a ! ! 1 j I i “-4 1 1 3 1 1 1 ’ 1 ’ !,//I///!/ 
0 0.2 0.4 D6 0.8 I.0 

PVP 

FIG. 1. Overall heat-transfer results for deep cylindrical 
cavities. 

depth are respectively presented in Figs. 1 and 2. 
Figure 1 consists of two parts. The upper por- 
tion is a plot of the apparent emittance of the 
cavity B@ [see equation (17a) for definition] as a 
function of the emittance E of the cavity wall. 
Curves are shown for cases in which the re- 
flectance is purely specular, pS/p = 1; purely 
diffuse, pa/p = 0; or is partly specuIar and 
partly diffuse, ps,lp = O-25, 0.5, and 0.75, The 
lower portion of the figure is a cross plot of the 
information appearing in the upper portion. It 
shows, for various fixed values of surface emit- 
tance, the variation of E@ as the reflectance 
ranges from purely diffuse to purely specular. 

By inspection of Fig. 1, it is seen that for any 
given surface emittance, the radiant emission of 
the cavity is greatest when the wall is specularly 
reflecting and least when the wall is diffusely 
reflecting. Cavities having surface reflectances 
that are partly specular and partly diffuse lie 
intermediate between the aforementioned limits. 
The increase of Ea with increasing ps/p is most 
marked for surfaces characterized by small 
values of the emittance G. Moreover, for such 
surfaces, the sharpest increases in Ed occur as 
ps/p approaches unity. 

Further study reveals that in all cases, the 
apparent emittance Ed exceeds the surface 
emittance E; this is especially marked for 
surfaces of lower emittance and is further 
accentuated as the reflectance becomes more 
specular. 

Consideration may now be given to the local 
heat-transfer results that are exhibited in Figs. 
2(a), 2(b), and 2(c). These figures correspond 

FIG. 2(a). Local he&t-ransfer and radiosity distributions 
for deep cylindrical cavities, c = 0.1. 
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FIG 

FIG. 

8 =0,5 
-7 0.7 

2(b). Lwal heat-transfer and radiosity distributions 
for deep cylindrical cavities, E = 0.5. 

2(c). Lxal heat-transfer and radiosity distributions 
for deep cylindrical cavities, E = 0.9. 

respectively to surface emittances E of 0.1, 0.5, 
and 0.9. Results for other values of E are 
available in reference 10, but these must be 
omitted here due to space limitations. Each of 
the aforementioned figures contains two sets of 
curves. Those sloping downward to the right 
represent the local heat flux and are referred 
to the left-hand ordinate, while those sloping 
upward to the right represent the local radiosity 
and are referred to the right-hand ordinate. 
The abscissa is the axial distance from the cavity 
opening. 

The figures show that in the neighborhood of 
the cavity opening, the local heat flux is largest 
when the cavity wall is a pure diffuse reflector 
and decreases as the specular component 
increases. On the other hand, in the interior of 
the cavity, an opposite trend exists; that is, the 
local heat flux is largest at a specularly-reflecting 
surface and is least at a diffusely-reflecting 
surface. These trends are most strongly in 

evidence at lower values of the surface emit- 
tance E. 

As to the radiosity, the highest values at any 
fixed emittance E correspond to the diffusely- 
reflecting surface; this applies at any axial 
location. 

Conical cavity 

The governing integral equation (18) for the 
conical cavity has been solved for parametric 
values of +- 1 - p), of ps/p, and of the half- 
opening angle q. The corresponding local and 
overall heat-flux results were computed from 
equations (14) and (19a). This information is 
presented in Figs. 3 and 4, respectively for the 
overall and local heat fluxes. 

C (DEGREES 1 

FIG. 3. Overall heat-transfer results for conical cavities. 

Attention may first be directed to Fig. 3, 
wherein there is plotted the apparent emittance 
of the cavity Ed as a function of the cone half- 
opening angle q. The curves are labelled accord- 
ing to the surface emittance E. Furthermore, for 
each E, results are shown for reflectances that 
are purely specular, psjp = 1; purely diffuse, 
psIp = 0; and for half specular and half diffuse, 
psjp = 0.5. 

Inspection of the figure indicates that the 
apparent emittance increases monotonically 
with increasing ps/p; thus, at a fixed surface 
emittance E, the specularly-reflecting cavity 
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radiates most energy and the diffusely-reflecting 
cavity least. The curves corresponding to 
pulp = O-5 do not necessarily he half way 
between those for purely specular and purely 
diffuse reflectance, although this behavior is 
nearly achieved when the surface emittance is 
high. At lower values of surface emittance, the 
curves for pg/p = 0.5 lie closer to those for 
diffuse reflectance when y is small and closer 
to those for specular rellectance when Q? takes 
on intermediate values. For still larger cone 
opening angles, all results approach the limit 
E& = E. In general, it can be stated that the 
apparent emittance becomes independent of the 
directional distribution of the reflectance for 
($?,40°. 

A graphical presentation of the axial distri- 
bution of the local heat flux is made in Figs. 4(a), 
4(b), and 4(c), respectively for E = 0.1, O-5, and 
0.9. This information is given as a function of 
x/L, the fractional distance along the slant 

0.3 04 07 04 09 
x/L 

FIG. 4(a). Local heat-transfer distributions for conical 
cavities, l = 0.1. 

FIG. 4(b). Local heat-transfer distributions for conical 

r,, 

FIG. 4(c). Local heat-transfer distributions for conical 
cavities, 6 = 0.9. 

height (x = 0 is at the cone apex). On each 
figure, results are shown for several cone half- 
opening angles between 10” and 80”. Moreover, 
for each opening angle, curves are plotted for 
three reflectance conditions, ps/p = 1, 0.5, and 
0. 

In general, for any fixed E, the local heat flux 
at any position on the cavity wall increases 
monotonically with pa/p. The results are par- 
ticularly sensitive to ps/p at locations nearer the 
cone apex and are quite insensitive to ps/p at 
locations near the cavity opening. Moreover, 
cones having small opening angles are much 
more sensitive to p*/p than are cones with large 
opening angles. Finally, it may be noted that 
cavities with low surface emittance are also 
more sensitive to pb/p than are cavities with 
highly emissive walls. 

Radiation transport through a circular tube 
Solutions of the governing integral equation 

(23) have been carried out for ps ranging from 
0 to 1-O and for L/R ranging from 1 to 40. Each 
of these solutions is, in itself, the axial distri- 
bution of the adiabatic wall temperature 
corresponding to the prescribed values of the 
parameters. The presentation of this informa- 
tion is quite space consuming and is therefore 
omitted here ; however, a complete set of graphs 
is available in the thesis [lo] from which this 
paper is drawn. 
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FIG. 5. Transport of radiant energy through a circular 
tube. 

The radiant energy Q transmitted through the 
tube has been evaluated from equation (24) and 
is displayed in Fig. 5. The abscissa of the figure 
is the specular reflectance component ps, and 
the curves are labelled with the tube aspect 
ratio. From the figure, it is seen that for a fixed 
tube geometry, the radiant transmission de- 
creases steadily as the specular reflectance 
decreases. The results for tubes that are relatively 
long are particularly sensitive to ps, especially 
at larger values of ps where the curves are steep. 
In general, for given thermal conditions, the 
radiant transmission through short tubes is 
greater than that through long tubes, regardless 
of the value of ps. 

It is interesting to observe that the radiant 
transport through a tube having both specular 
and diffuse reflectance components is identical 
to the transmission through a purely specularly- 
reflecting tube, provided that both tubes have 
equal values of ~8. This characteristic permits 
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R&.um&Une methode d’analyse a BtC obtenue pour determiner l’echange par rayonnement entre 
des surfaces. chacune d’elles nouvant avoir a la fois des composantes de reflexion speculaire et diffuse. 
La formulation emploie et g&ralise le concept du facteur d’echange (qui a BtC initialement imagine 
pour des surfaces a reflexion spt!culaire) et le concept de la radiosite (qui a et8 initialement imagine pour 
des surfaces a reflexion diffuse). Des formes vari&s de la methode analytique sont present&es qui 
conviennement soit pour des calculs globaux interessant I’ingenieur ou pour des recherches locales 
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plus detail&s. On a consid& specifiquernent dune fawn analytique et numerique l’echange par 
rayonnement dam des cavitb cylindriques et coniques et le transport par rayonnement a travers 
un tube circulaire. Des resultats sont present&s pour diverses subdivisions du rayonnement rCfl&chi 
par la surface en composantes speculaire et diffuse. En general, on trouve que le rayonnement sortant 

dune cavite croit lorsque la composante sp&culaire devient une fraction plus grande du rayonnement 
r&chi de la surface. Une conclusion semblable se rapport a la transmission du rayonnement a travers 

un tube. 

Zusammenfaasung-Zur Bestimmung des Strahlungsaustauches zwischen Oberflachen, von denen 
jede sowohl eine spiegelnde wie such eine differse Komponente des Reflexionsvermogens hat, 
wurde eine Methode zum Analysieren aufgestellt. Die Formulierung verwendet und verallgemeinert 
das Austauschfaktorkonzept (das ursprtinglich fur spiegelnd reflektierende Oberfl?ichen aufgestellt 
wurde) und das Strahlungskonzept (das ursprtinglich fiir diffus-reflektierende Oberflachen aufgestellt 
wurde). 

Es werden verschiedene Formen von analytischen Methoden angeftihrt, die entweder fur Pauschal- 
berechnungen des Ingenieurs oder fur detaillierte iirtliche Untersuchgungen geeignet sind. Besondere 
analytische und numerische Beriicksichtigung fand der Strahlungsaustausch in zylindrischen und 
konischen Vertiefungen und der Strahlungstransport durch ein Kreisrohr. Fur verschiedene Unter- 
teilungen des Oberfllchenreflexionsfaktors in spiegelnde und diffuse Komponenten werden Ergebnisse 
angegeben. Allgemein lindet man, dass die Strahlungsdichte aus einer Vertiefung zunimmt, wenn die 
spiegelnde Komponente als grosserer Bruchteil des Oberfllchenreflexionsvermogens auftritt. Eine 
Bhnliche Feststellung llsst sich fur die Ubertragung der Strahlungsenergie durch ein Rohr machen. 

AnnoTaqsin-Pa3pa6OTaHa MeToAnKa aHaJni3a inn OnpeneJIeHHR nyWrcTor0 06MCna Me?K,Qy 
nOBepXHOCTnMn,na~~anH3KOTOpOZt MOFKeTo6JIa~aTbKaK3epKaJIbHOti,TaK~~EI@'#y31iOHHO~ 

KOMnOHeHTaMH OTpamaTeJIbHOt CnOCO6HOCTH. @OpMyJIIIpOBKa LlCnOJIb3yeT EI o6o6maeT no- 

HRTLle 06MeHHOrO KOFJ+#H~HeHTa (KOTOpbIfi nepBOHaYaJIbH0 6bm BBeAeH AJIH AM#@y3HOHHO- 

OTpa~aIOIQMX nOBepXHOCTet). AaHbI pa3JIIiYHbJe aHaJIElTPIYeCKHe MeTOAbI, npHrOAHbIe KaK 

AJIR pa3JlHYHOrO pOAa ElHmeHepHbIX paCseTOB, TaK II AJIFI Bonee AeTaJlbHbIX SiCCJleAOBaHHti. 

Oco6oe BHHMaHEle yAeJIeH0 aHaJIE%TWIeCKOMy EI WCJIeHHOMy MCCJIeAOBaHHIO JIyWCTOrO 

06MeHa B ~~Jl2lH~pF4eCKHXPI KOHWieCKkIX IIOJIOCTFIXEZ Jly=IllCTOMy IIepeHOCy sepe3 KpyrJlyIO 

Tpy6y. npeACTaBJIeHbI pe3yJIbTaTbl AJIn pa3JIWfHbIX BMAOB OTpaHtaTeJIbHOti C~OCO~HOCTH 

HOBepXHOCTH. Boobme, HatAeHO, =ITO JIyWICTbIti nOTOK, HCXOAffLQPIli H3 IIOJIOCTII, yBeJIWIH- 

BaeTCR n0 Mepe TOrO, KaK 3epKaJIbHaH KOMnOHeHTa B OTpamaTeJIbHOti C~OCO~HOCT~ nOBepX- 

HOCTR paCTeT. AHanornsHoe yTBep?KAeHHe CnpaBeAJlKBO AJlFl CJly'Ian nepeAaW8 JlyWCTOi 

3Heprnll qepe3 ~py6~y. 


